#### Literature Cited

- (1) Choppin, G. R., Henrie, D. E., Buijs, K., Inorg. Chem., 5, 1743 (1966).

- Hamer, W. J., Wu, Y.-C., J. Phys. Chem. Ref. Data, 1, 1047 (1972).
   Libus, Z., Sadowska, T., J. Phys. Chem., 73, 3229 (1969).
   Rard, J. A., Habenschuss, A., Spedding, F. H., J. Chem. Eng. Data, 21, 374 (1976).
- (5) Rard, J. A., Habenschuss, A., Spedding, F. H., J. Chem. Eng. Data, preceding paper in this issue
- (6) Rard, J. A., Spedding, F. H., J. Chem. Eng. Data, 22, 56 (1977).
- Robinson, R. A., Lim, C. K., J. Chem. Soc., 1840 (1951).
   Robinson, R. A., Stokes, R. H., "Electrolyte Solutions", 2nd ed, revised,
- Butterworths, London, England, 1959. Spedding, F. H., Baker, J. L., Walters, J. P., J. Chem. Eng. Data, 20, 189 (9)
- (1975)(10) Spedding, F. H., Mohs, M. A., Derer, J. L., Habenschuss, A., submitted to J. Chem. Eng. Data.
- (11) Spedding, F. H., Jaffe, S., J. Am. Chem. Soc., 76, 884 (1954).

- (12) Spedding, F. H., Pikal, M. J., Ayers, B. O., J. Phys. Chem., 70, 2440 (1966).
- (13) Spedding, F. H., Rard, J. A., *J. Phys. Chem.*, **78**, 1435 (1974).
   (14) Spedding, F. H., Shiers, L. E., Brown, M. A., Derer, J. L., Swanson, D. L.,
- Habenschuss, A., J. Chem. Eng. Data, 20, 81 (1975). (15) Spedding, F. H., Shiers, L. E., Rard, J. A., J. Chem. Eng. Data, 20, 66 (1975).
- (16) Spedding, F. H., Weber, H. O., Saeger, V. W., Petheram, H. H., Rard, J. A.,
- Habenschuss, A., J. Chem. Eng. Data, 21, 341 (1976). Symons, M. C. R., Waddington, D., J. Chem. Soc., Faraday Trans. 2, 71, (17)22 (1975).

- Templeton, D. H., Dauben, C. H., J. Am. Chem. Soc., 76, 5237 (1954).
   Walrafen, G. E., J. Chem. Phys., 52, 4176 (1970).
   Zinov'ev, A. A., Shchirova, N. A., Russ. J. Inorg. Chem., 5, 626 (1960).

Received for review July 19, 1976. Accepted December 18, 1976. This work was performed for the U.S. Energy Research and Development Administration under Contract No. W-7405-eng-82.

# The Apparent Molal Volumes of Aqueous Solutions of NaCl, KCl, MgCl<sub>2</sub>, Na<sub>2</sub>SO<sub>4</sub>, and MgSO<sub>4</sub> from 0 to 1000 Bars at 0, 25, and 50 $^{\circ}C^{\dagger}$

Chen-Tung Chen, Robert T. Emmet, and Frank J. Millero\*

Contribution from the Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149

The densities of aqueous solutions of NaCl, KCl, MgCl<sub>2</sub>, Na<sub>2</sub>SO<sub>4</sub>, and MgSO<sub>4</sub> have been measured with a high pressure magnetic float densimeter from 0 to 1000 bars, 0.01 to 1.0 *m* ionic strength, and at 0, 25, and 50  $^{\circ}$ C. The relative apparent molal volumes,  $\phi_V(P) - \phi_V(0)$ , of these solutions have been fitted to an equation of the form  $\phi_{\rm V}(P)$  $-\phi_{v}(0) = \phi_{v}^{0}(P) - \phi_{v}^{0}(0) + Sm^{1/2}$  where the relative infinite dilution partial molal volumes,  $\phi_V^0(P) - \phi_V^0(0)$ , and the slopes S are functions of applied pressure and temperature. The pressure, temperature, and concentration dependence of the apparent molal volumes are briefly discussed.

Although there are reliable density and apparent molal volume data for many electrolytes at 1 atm (9, 11), little reliable data are available at high pressures. In our recent studies of the volume properties of multicomponent electrolyte solutions (13, 15) we have been examining the use of Young's rule (18) in predicting the properties of seawater. In order to predict the apparent molal volumes of seawater at elevated pressures (3), we had a need for reliable volume data on sea salts (NaCl, KCl, MgCl<sub>2</sub>, Na<sub>2</sub>SO<sub>4</sub>, and MgSO<sub>4</sub>). The present paper contains results on the apparent molal volumes of these salts from 0 to 1000 bars applied pressure, 0.01 to 1.0 ionic strength (to 2.0 ionic strength for NaCl), and 0, 25, and 50 °C.

### **Experimental Section**

The high pressure magnetic float densimeter used in this study is described in detail elsewhere (12). The high pressure densimeter consists essentially of a 1 atm densimeter (8) enclosed in a nonmagnetic bomb with optical ports to observe the motion of the float. The apparatus consists of a pressure bomb, a magnetic float, and auxiliary measuring and control systems.

The pressure bomb used in this study was machined from beryllium copper. The cylindrical bomb contains two plugs seated with O rings to form a vessel of 170 cm<sup>3</sup>. The magnetic float is made of thick-wall (0.4 cm) Pyrex glass and contains an Alnico-5 bar magnet. The volume of the float is 58.7672 cm<sup>3</sup> at 0 °C and 1 atm.

The pressure bomb was completely immersed in a 30-L constant temperature bath controlled to  $\pm 0.001 \,^{\circ}\text{C}$  with a Hallikainen Thermotrol. The temperature of the bath was set to ±0.005 °C with a platinum resistance thermometer (calibrated by the National Bureau of Standards, 1968 temperature scale). A 2800-bar Enerpac hand pump was used to generate pressure. A 1400-bar Heise Bourdon tube gauge was used to set the pressure. The Heise gauge was calibrated with a Harwood Engineering deadweight tester. The pressures were found to be reproducible to  $\pm 0.5$  bars from 0 to 1000 bars and are thought to be accurate to 1.4 bars.

lon-exchanged (18 M $\Omega$ ) water (Millipore-Super Q system) was used in the calibration runs and in the preparation of the solutions. Reagent grade salts were used, without further purification, for preparation of the solutions. The solutions of NaCl, KCl,  $Na_2SO_4$ , and  $MgSO_4$  were analyzed by evaporation to dryness. The MgCl<sub>2</sub> solutions were analyzed gravimetrically with AgNO<sub>3</sub>,

The calibration of the densimeter (2, 3) was made with ionexchanged water using the densities of water from the soundderived equation of state (4). The calibration results (2) indicate that the precision of the densities is  $\pm 3$  ppm at a given temperature and  $\pm 8$  ppm over the entire temperature range. The accuracy of the densities is thought to be  $\sim$ 30 ppm at 1000 bars applied pressure. An error of  $\pm 30$  ppm in density is equivalent to an error of  $\pm 0.3$  cm<sup>3</sup> mol<sup>-1</sup> at 0.1 m and  $\pm 0.03$  cm<sup>3</sup> mol<sup>-1</sup> at 1.0 *m* in  $\phi_V$  for 1–1 electrolytes.

<sup>†</sup> Taken in part from the dissertation submitted by Robert T. Emmet in partial fulfillment of the requirements for the degree of Doctor of Philosophy, University of Miami

Table I. The Apparent Molal Volumes of Aqueous Salt Solutions as a Function of Concentration and Pressure at 0 °C

|                  |                                         |                   |                   | A. (NaCI)                        |                    |                   |                   |                   |
|------------------|-----------------------------------------|-------------------|-------------------|----------------------------------|--------------------|-------------------|-------------------|-------------------|
| <i>P</i> , bar   | <i>m</i> = 0.03027                      | <i>m</i> = 0.1299 | <i>m</i> = 0.2507 | $\phi_{V}(NaCl)$<br>m = 0.3852   | <i>m</i> = 0.7766  | <i>m</i> = 0.9630 | <i>m</i> = 1.307  | <i>m</i> = 2.008  |
| 0.00.4           | 12 200                                  | 12 607            | 12 052            | 14 279                           | 15.090             | 15 436            | 16.040            | 17 189            |
| 0.00             | 14.009                                  | 14 071            | 15.552            | 14,279                           | 15.005             | 16.040            | 10.040            | 17.102            |
| 100.90           | 14.550                                  | 14.07 1           | 15.149            | 14.033                           | 15.790             | 16 622            | 17 101            | 19 150            |
| 199.80           | 15.700                                  | 15.000            | 15.010            | 15.324                           | 10.007             | 10.032            | 17.121            | 10.109            |
| 300.20           | 16.697                                  | 15.929            | 16.450            | 15.768                           | 16.827             |                   |                   |                   |
| 401.00           | 17.281                                  | 16.375            | 16.954            | 16.009                           | 17.335             | 17.713            | 18.096            | 19.044            |
| 501.10           |                                         | 16.738            | 17.464            | —                                | 17.880             | 18.202            | 18.531            |                   |
| 601.00           | 17.530                                  | 17.203            | 17.996            | —                                | 18.230             | 18.664            | 19.935            | 19.829            |
| 701.60           | 18.176                                  | 17.635            | 18.438            |                                  | 18.647             | 19.101            | 19.353            | 20.185            |
| 802.00           | 18.246                                  | 17.970            | 18,935            | _                                | 19.032             | 19.510            | 19.728            | 20.528            |
| 901 70           | 18 579                                  | 18 244            | 19 250            | _                                | 19 420             | 19.877            | 20.066            | 20.840            |
| 1001.20          | 18.878                                  | _                 | 19.655            |                                  | 19.757             | _                 | 20.406            | 21.136            |
|                  |                                         |                   |                   |                                  |                    |                   |                   |                   |
|                  |                                         |                   |                   | $\phi_{V}(KCI)$                  |                    |                   |                   |                   |
| <i>P</i> , bar   | <i>m</i> = 0.1                          | 1655 m =          | = 0.3331          | <i>m</i> = 0.5009                | <i>m</i> = 0.669   | 93 m =            | 0.8360            | <i>m</i> = 1.0040 |
| 0.00 ª           | 24 40                                   | 17 2              | 4 853             | 25 244                           | 25 609             | 2                 | 5 949             | 26,280            |
| 106.62           | 27.70                                   | <i>n</i> 2        | 4.000<br>6.280    | 26.573                           | 26.856             | 2                 | 5.076             | 27.267            |
| 190.02           | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 2                 | 0.200<br>7.07E    | 20.0/0                           | 20.000             | 21                | 7 971             | 21.201            |
| 396.29           | 27.32                                   | 20 2              | 1.215             | 27.538                           | 27.806             | 2                 | 1.0/1             | 20.123            |
| 595.97           | 27.60                                   | 25 2              | 8.129             | 28.369                           | 28.601             | 20                | 5.051             | 28.873            |
| 795.65           |                                         | 2                 | 8.857             | 29.086                           | 29.309             | 2                 | 9.331             | 29.536            |
| 895.49           | 29.38                                   | 30                | _                 |                                  |                    |                   |                   | -                 |
| 995.33           |                                         | 2                 | 9.498             | 29.716                           | 29.897             | 2                 | 9.930             | <u> </u>          |
|                  |                                         |                   |                   |                                  |                    |                   |                   |                   |
|                  |                                         |                   |                   | $\phi_{V}(MgCl_{2})$             |                    |                   |                   |                   |
| P, bar           | <i>m</i> = 0.00                         | m = 0.0           | 03505 n           | n = 0.07877                      | <i>m</i> = 0.07937 | m = 0.1395        | <i>m</i> = 0.2184 | <i>m</i> = 0.3150 |
| 0.00%            |                                         |                   |                   | 10.000                           | 10.040             | 10.040            | 14.041            | 14 706            |
| 0.00*            | 11.1/                                   | 4 11.9            | 14                | 12.638                           | 12.646             | 13.343            | 14.041            | 14.720            |
| 99.90            | 12.56                                   | 8 13.3            | 05                | 13.937                           | 14.010             | 15.786            | 15.326            | 16.024            |
| 199.80           | 12.56                                   | 8 14.5            | 98                | 15.059                           |                    | 16.890            | 16.425            | 17.132            |
| 300.20           | 15.70                                   | 4 15.9            | 80                |                                  | 16.776             | 17.890            |                   | 18.208            |
| 401.00           | 15.39                                   | 2 16.9            | 80                | 17.545                           | 17.905             | 17.983            | 18.520            | 19.192            |
| 501 10           | 15.80                                   | 0 17.4            | 33                | 18 349                           | 18 162             | 18.875            | 19.274            | 20.059            |
| 601.00           | 19.00                                   | A 19.9            | 22                | 10.206                           | 19.649             |                   | 20.215            | 20.969            |
| 701.00           | 10.42                                   | 4 10.0            | 22                | 19.290                           | 13.043             | 20.780            | 20.210            | 20.000            |
| 701.60           |                                         | 19.9              | 99                | 20.169                           | 20.058             | 20.780            | 21.114            | 21.004            |
| 802.00           | 20.56                                   | n —               | -                 | 21.332                           | 21.6/7             | 21.730            | 21.799            |                   |
| 901.70           |                                         |                   | -                 | 22.336                           | 22.580             | 22.580            | 22.652            | 23.322            |
| 1001.20          |                                         |                   | -                 | 22.955                           | 22.973             | 23.446            | 23.336            |                   |
|                  |                                         |                   |                   |                                  |                    |                   |                   |                   |
| 0 6              |                                         |                   | -                 | $\phi_{\vee}(Na_2SO_4)$          | m = 0.1490         | m = 0             | 0210              | m = 0.3335        |
| P, bar           |                                         | m = 0.00899       |                   | - 0.0832                         | 11 - 0.1480        |                   | 2312              |                   |
| 0.00             | ) a                                     | 3.227             |                   | 5.809                            | 7.467              | 9.3               | 71                | 11.536            |
| 00.00            | )                                       | 5 110             |                   | 8.214                            | 9.898              | 116               | 99                | 13.440            |
| 400.00           |                                         | 0.110             |                   | 0 692                            | 11 740             | 12 /              | 39                | 15 083            |
| 199.60           |                                         |                   |                   | 11 641                           | 11.740             | 45 4              | 00                | 16 609            |
| 300,20           |                                         | —                 |                   | 11.041                           |                    | 10.1              | 00<br>96          | 10.030            |
| 401.00           | )                                       |                   |                   | 13.022                           | 15.254             | 16./              | 00                | 10.1/0            |
| 501.10           | )                                       | 11.805            |                   | 14.365                           | 16.626             | 18.1              | /5                | 19.576            |
| 601.00           | )                                       | 13.933            |                   | 15.781                           | 18.103             | 19.4              | 75                | 20.960            |
| 701.60           | )                                       | 14.391            |                   | 17.068                           | 19.474             | 20.9              | 54                | 22.219            |
| 802.00           | )                                       | 16.562            |                   | 18.291                           | 20.853             | 22.1              | 28                | 23.471            |
| 901 70           | )                                       | 18,219            |                   | 19.517                           | 22,177             | 23.2              | 18                | 24.652            |
| 1001.00          |                                         | .U.L 10           |                   |                                  | 23.255             | 24.2              | 19                | 25.676            |
| 1001.20          | <b>,</b> ,,,,,,,                        |                   |                   |                                  |                    |                   |                   |                   |
|                  |                                         |                   |                   |                                  |                    |                   |                   |                   |
| P har            | m                                       | ≈ 0.01985         | <i>m</i> = 0      | φ <sub>∨</sub> (MgSO₄)<br>.05328 | m = 0.1029         | <i>m</i> = 0 1    | 693               | <i>m</i> = 0.2503 |
| , odi            |                                         |                   | 0                 |                                  |                    |                   |                   |                   |
| 0.00ª            |                                         | 9.081             | <del>-</del> 7,   | 159                              | -5.568             | -4.17             | 2                 | -2.881            |
| 196.62           |                                         | -2.095            | -                 | _                                | _                  |                   |                   |                   |
| 296.95           |                                         | _                 | -                 | _                                |                    |                   |                   | —                 |
| 396.29           |                                         | 1.140             | 2.                | 000                              | 2.686              | 3.43              | 2                 | 3.447             |
| 496 13           |                                         | _                 |                   | -                                | _                  |                   |                   | _                 |
| 505.07           |                                         | 3 599             | 7                 | 755                              | 5 501              | 6.08              | 2                 | 6.054             |
| 000.07<br>205.07 |                                         | 0.000             | 7.                | ,                                | 0.001              | 0.00              | -                 |                   |
| 090.01           |                                         |                   | -                 | 755                              | 8 209              | 0 50              | 17                | 8 444             |
| / 95.05          |                                         | 0.400             | 7.                | 100                              | 0.200              | 0.50              |                   | -                 |
| 895.49           |                                         |                   |                   | -                                | 10.406             |                   | 0                 | —                 |
| 995.33           |                                         | 9.004             | 10.               | 191                              | 10.490             | 10.76             | 2                 |                   |

9.604 995.33 <sup>a</sup> The values of  $\phi_V$  have been normalized to the best available literature values calculated from eq 3.

| Table II  | The | Annovent Melal | Volumes of |         | Call Colutions of   | Eurotion of   | Concentration and | Brossure at 25 °   | <b>^</b> |
|-----------|-----|----------------|------------|---------|---------------------|---------------|-------------------|--------------------|----------|
| ladie II. | ine | Apparent Molal | volumes of | Aqueous | Salt Solutions as a | a Function of | concentration and | a Pressure at 25 v | -        |

|               |            |            | $\phi_{V}(NaC)$ | 21)               |            |                   |                  |
|---------------|------------|------------|-----------------|-------------------|------------|-------------------|------------------|
| P, bar        | m = 0.1299 | m = 0.2507 | m = 0.3852      | <i>m</i> = 0.7766 | m = 0.9630 | <i>m</i> = 1.3070 | <i>m</i> = 2.008 |
| 0.00 <i>ª</i> | 17.289     | 17.547     | 17.765          | 18.237            | 18.416     | 18.705            | 19,189           |
| 99.90         | 18.493     | 18.536     | 18.446          | 18.583            | 18.738     | 19.044            | 19.536           |
| 199.80        | 18.764     | 18.898     | 18.820          | _                 | 19.104     | 19.374            | 19.853           |
| 300.20        | 19.294     | 19.332     | 19.171          |                   | 19.451     | 19.700            | 20.145           |
| 401.00        | 19.517     | 19.681     | 19.478          | 19.565            | 19.799     | 20.009            | 20.439           |
| 501.10        | 19.757     | 19.988     | 19.785          | 19.844            | _          | 20.284            | 20.704           |
| 601.00        | 20.157     | 20.294     | 20.083          | 20.135            | 20.417     | 20.566            | 20.956           |
| 701.60        | -          | 20,625     | 20.373          | 20.434            | 20.695     | 20.827            | 21.195           |
| 802.00        | 20.693     | 20.847     | 20.641          | 20.714            | 20.972     | 21.066            | 21.428           |
| 901.70        | 20.938     |            | 20.877          | 20.953            | 21.233     | 21.304            | 21.645           |
| 1001.20       | 31.133     |            | 21.131          | —                 | 21.462     | 21.524            |                  |

|               |                   | $\phi_{\vee}($    | <ci)< th=""><th></th><th></th></ci)<> |                   |                   |
|---------------|-------------------|-------------------|---------------------------------------|-------------------|-------------------|
| P, bar        | <i>m</i> = 0.3331 | <i>m</i> = 0.5009 | <i>m</i> = 0.6693                     | <i>m</i> = 0.8360 | <i>m</i> = 1.0040 |
| 0.00 <i>ª</i> | 27.935            | 28.193            | 28.415                                | 28.610            | 28.791            |
| 196.62        | 28.873            | 29.104            | 29.258                                | 29.249            | 29.467            |
| 396.29        | 29.470            | 29.670            | 29.867                                | 29.804            | 30.000            |
| 595.97        | 29.985            | 30.189            | 30.319                                | 30.287            | 30.465            |
| 795.65        | 30.434            | 30.628            | 30.752                                | 30.712            | 30.896            |
| 995.33        | 30.789            | 31.015            | 31.137                                | 31.080            | 31.257            |

|               |             | $\phi_{V}(MgCl_{2})$ |                   |            |  |
|---------------|-------------|----------------------|-------------------|------------|--|
| P, bar        | m = 0.00876 | m = 0.03505          | <i>m</i> = 0.2184 | m = 0.3150 |  |
| 0.00 <i>ª</i> | 15.172      | 15.781               | 17.162            | 17.477     |  |
| 99.90         | 15.970      | 16.596               | 18.058            | 18.476     |  |
| 199.80        | _           | 17.140               | 18.825            | 19.250     |  |
| 300.20        | 16.460      | 18.454               | 19.587            | 19.967     |  |
| 401.00        | 16.664      | 18.812               | 21.199            | 20.692     |  |
| 501.10        |             | 19.484               | 20.839            | 21.324     |  |
| 601.00        |             | 19.806               | 21.537            | 21.977     |  |
| 701.60        | 19.437      | 20.239               | 22.111            | 22.587     |  |
| 802.00        | 21.241      | 21.693               | 22.640            | 23.129     |  |
| 901.70        | _           | 22.446               | 23.241            | _          |  |
| 1001.20       |             | 22.385               | 23.704            | 24.157     |  |

|                |                   | $\phi_{V}(Na_{2}SO_{4})$ |                   |                   |
|----------------|-------------------|--------------------------|-------------------|-------------------|
| <i>P</i> , bar | <i>m</i> = 0.0832 | <i>m</i> = 0.1480        | <i>m</i> = 0.2312 | <i>m</i> = 0.3335 |
| 0.00 <i>ª</i>  | 14.963            | 16.095                   | 17.234            | 18.388            |
| 99.90          | 16.508            | 17.711                   | 19.130            | 20.352            |
| 199.80         | 17.767            | 18.902                   | 20.311            | 21.454            |
| 300.20         | 18.994            | _                        | 21.481            | 22.564            |
| 401.00         | 20.150            | 21.232                   | 22.544            | 23.569            |
| 501.10         | 21.328            | 22.218                   | 23.558            | 24.553            |
| 601.00         | 22.412            | 23.311                   | 24.568            | 25.548            |
| 701.60         | 23.435            | 24.299                   | 25.560            |                   |
| 802.00         | 24.569            | 25.332                   | 26.494            | 27.394            |
| 901.70         |                   | 26.255                   | 27.415            | _                 |
| 1001.20        |                   | 27.268                   | 28.318            | 29.121            |
|                |                   |                          |                   |                   |

|               |                    | $\phi_{ m V}({\sf Mg})$ | SO4)              |                   |                   |  |
|---------------|--------------------|-------------------------|-------------------|-------------------|-------------------|--|
| P, bar        | <i>m</i> = 0.01985 | <i>m</i> = 0.05328      | <i>m</i> = 0.1029 | <i>m</i> = 0.1693 | <i>m</i> = 0.2503 |  |
| 0.00 <i>ª</i> | -3.402             | -1.833                  | -0.660            | 0.346             | 1.375             |  |
| 96.79         |                    |                         | _                 | _                 |                   |  |
| 196.62        | 1.861              | 3.089                   | 3.653             | 4.598             | 4.351             |  |
| 296.45        |                    |                         |                   |                   |                   |  |
| 396.29        | 4.569              | 5.626                   | _                 | 6.774             | 6.443             |  |
| 496.13        |                    |                         |                   |                   | _                 |  |
| 595.97        | 6.614              | 7.840                   | 8.008             | 8.777             | 8.395             |  |
| 695.81        | _                  |                         |                   |                   |                   |  |
| 795.65        | 7.543              | 9.769                   | 9.864             | 10.580            | 10,150            |  |
| 895.49        |                    |                         |                   |                   | _                 |  |
| 995.33        | 9.148              | 11.431                  | 11.570            | 12,204            | 11.801            |  |

 $^a$  The values of  $\phi_{\rm V}$  have been normalized to the best available literature value calculated from eq 3.

| Table III. | The Apparent N | folal Volumes | of Aqueous Salt | Solutions as a Fur | nction of Concentration | on and Pressure at 50 | °C |
|------------|----------------|---------------|-----------------|--------------------|-------------------------|-----------------------|----|
|------------|----------------|---------------|-----------------|--------------------|-------------------------|-----------------------|----|

|                                       |                   |                   | ¢√(NaCl)                         |            |                   |                   |                   |
|---------------------------------------|-------------------|-------------------|----------------------------------|------------|-------------------|-------------------|-------------------|
| P, bar                                | <i>m</i> = 0.1299 | <i>m</i> = 0.2507 | m = 0.38                         | 52         | <i>m</i> = 0.7766 | <i>m</i> = 0.9630 | <i>m</i> = 1.307  |
| 0.00.4                                | 18 610            | 18 865            | 19.060                           |            | 19 4 16           | 19 527            | 19 677            |
| 99.90                                 | 19.718            | 19 545            | 19 648                           |            | 19.917            | 19.838            | 19.954            |
| 199.80                                | 20,090            | 10.040            | 10.040                           |            | 20.203            | 20 127            | 20.222            |
| 300.30                                | 20.090            |                   | 19.942                           |            | 20.203            | 20.137            | 20.232            |
| 401.00                                | 20.430            | 20.125            | 20.242                           |            |                   | 20.422            | 20.492            |
| 401.00                                | 20.698            | 20.393            | 20.533                           |            | 20.731            | 20.705            | 20.950            |
| 501.10                                | 20.858            | 20.686            | 20.793                           |            | 20.987            | 20.971            | _                 |
| 601.00                                | 21.154            | 21.029            | 21.048                           |            | 21.205            | 21.224            | 21.223            |
| 701.60                                | 21.339            | 21.348            | 21.306                           |            | 21.448            | 21.470            | 21.442            |
| 802.00                                | 21.607            | 21.601            | 21.612                           |            | 21.699            |                   | 21.666            |
| 901.70                                | 21.742            | 21.964            | 21.881                           |            | 21.893            | —                 | 21.868            |
| 1001.20                               | 21.938            | 22.253            | 22.114                           |            | 22.126            |                   |                   |
|                                       |                   |                   | $\phi_{V}(KCI)$                  |            |                   |                   |                   |
| P, bar                                | <i>m</i> = 0.3331 | <i>m</i> = 0.5009 |                                  | m = 0.6693 | 3                 | <i>m</i> = 0.8360 | <i>m</i> = 1.0040 |
| 0.00 <i>ª</i>                         | 28.869            | 29.134            |                                  | 29.350     |                   | 29.533            | 29.694            |
| 196.62                                | 29.757            | 29.968            |                                  | 30.125     |                   | 30.110            | 30.303            |
| 396.29                                | 30.235            | 30,432            |                                  | 30.585     |                   | 30.547            | 30.735            |
| 595.97                                |                   | 30.849            |                                  | 30,988     |                   | 30.939            | 31 123            |
| 795.65                                | 31.046            |                   |                                  | 31 350     |                   | 31 281            | 31.464            |
| 005 33                                | 31 350            | 31 590            |                                  | 31 66 1    |                   | 31 505            | 31 770            |
|                                       |                   |                   |                                  | 31.001     |                   |                   |                   |
|                                       |                   |                   | $\phi_V(MgCl_2)$                 |            |                   |                   |                   |
| P, bar                                | <i>m</i> = 0.0    | 07937             | m = 0.1395                       | 5<br>      | <i>m</i> = 0      | .2184             | <i>m</i> = 0.3150 |
| 0.00 <sup>a</sup>                     | 15.6              | 21                | 16.229                           |            | 16.7              | '92               | 17.295            |
| 99.90                                 | 16.6              | 34                | 17.619                           |            | 18.0              | )23               | 18.317            |
| 199.80                                | 17.2              | 38                | 18.261                           |            | 18.7              | /17               | 19.028            |
| 300.20                                | 18.1              | 05                | 18.974                           |            | 19.4              | 54                | 19.747            |
| 401.00                                | 18.5              | 12                | 19.546                           |            | 20.1              | 18                | 20.353            |
| 501 10                                | 19 1              | 85                | 20 206                           |            | 20.7              | 709               | 21.010            |
| 601.00                                | 19.9              | 16                | 20.645                           |            | 21.3              | 356               | 21.602            |
| 701.60                                | 20.5              | 44                | 21 246                           |            | 21 9              | 17                |                   |
| 802.00                                | 20.8              | 44                | 21.755                           |            | 22.5              | 531               | 22.705            |
| <u></u>                               |                   |                   |                                  |            |                   |                   |                   |
| P. bar                                | m = 0.00899       | <i>m</i> = 0.0367 | $\phi_V(Na_2SO_4)$<br>m = 0.0832 | ? n        | n = 0.1480        | m = 0.2312        | <i>m</i> = 0.3335 |
| · · · · · · · · · · · · · · · · · · · |                   |                   |                                  |            |                   |                   |                   |
| 0.00 <i>ª</i>                         | 15.256            | 16.428            | 17.584                           |            | 18.714            | 19.826            | 20.925            |
| 99.90                                 |                   | 16.478            | 18.726                           |            | 19.787            | 20.905            | 21.982            |
| 199.80                                | 16.371            | 17.563            | 19,717                           |            | 20.849            | 21.904            | 22.975            |
| 300.20                                | 18.017            | —                 | 20.918                           |            | 21.810            | 22.910            | 23.912            |
| 401.00                                | 19.114            | 19.650            |                                  |            | 22.679            | 23.847            | 24.779            |
| 501.10                                |                   | 20.563            | 22.703                           |            | 23.630            | 24.705            | 25.624            |
| 601.00                                |                   | 21.341            | 23.567                           |            | 24.487            | 25.516            | 26.440            |
| 701.60                                | 22.358            | 22,503            | 24.323                           |            | 25.329            | 26.365            | 27.230            |
| 802.00                                | 22.799            | 22.997            |                                  |            | 26.129            | 27.075            | 28.008            |
|                                       |                   |                   | . (M-00 )                        |            |                   |                   |                   |
| P har                                 | m = 0.01985       | m = 0.0532        | <i>ψ</i> γ(ivigο∪₄)<br>28        | m = 0.10   | 29                | <i>m</i> = 0,1693 | m = 0.2503        |
|                                       |                   |                   |                                  |            |                   |                   |                   |
| 0.00 <i>ª</i>                         | -2.861            | -1.053            |                                  | 0.073      |                   | 0.973             | 2.068             |
| 196.62                                | 2.783             | 4.211             |                                  | 4.564      |                   | 5.191             | 5.025             |
| 396.29                                | 6.012             | 6.784             |                                  | 6.764      |                   | 7.185             | 6.933             |
| 496.13                                |                   |                   |                                  |            |                   |                   | -                 |
| 595.97                                | 8 345             | 8 730             |                                  | 8.500      |                   | 8.979             | 8.643             |
| 605 21                                | 0.040             | 0.700             |                                  |            |                   |                   | _                 |
| 705 65                                | 0 106             | 10 220            |                                  | 0 004      |                   | 10 5 1 5          | 10.140            |
| 190.00                                | 3,430             | 10.229            |                                  | 3.304      |                   |                   |                   |
| 070.49                                |                   | _                 |                                  | 11 400     |                   | 11 777            | 11 535            |
| 995.33                                | 9.979             |                   |                                  | 11.420     |                   | 11.777            | 11.000            |

 $^a$  The values of  $\phi_V$  have been normalized to the best available literature values calculated from eq 3.

### **Results and Discussion**

The densities of aqueous solutions of NaCl, KCl, MgCl<sub>2</sub>, Na<sub>2</sub>SO<sub>4</sub>, and MgSO<sub>4</sub> have been measured (*2*) from 0.01 to 1.0 ionic strength with a high pressure densimeter. The measurements were made from 0 to 1000 bars (in 100 bar increments)

and at 0, 25, and 50  $^{\circ}$ C. The apparent molal volumes have been determined from these densities (*d*) by using the equation

$$\phi_{\rm V} = \frac{1000(d^0 - d)}{dd^0 m} + \frac{M}{d} \tag{1}$$



Figure 1. Apparent molal volumes of NaCl as functions of pressure at various concentrations and 0  $^{\circ}{\rm C}.$ 



**Figure 2.** Apparent molal volumes of NaCl, KCl, MgCl<sub>2</sub>, Na<sub>2</sub>SO<sub>4</sub>, and MgSO<sub>4</sub> as functions of pressure at  $l_m \approx 1$  and 0 °C.

where  $d^0$  is the density of water (4), *m* is the molality of the solution, and *M* is the molecular weight of the salt. The values of  $\phi_V$  determined from eq 1 are given in Tables I, II, and III for various solutions. Since the  $\phi_V$ 's for NaCl solutions have been obtained over the largest concentration range (0.03 to 2 *m*), we have examined the pressure and concentration dependence in Figure 1. The values of  $\phi_V$  for NaCl at various molal ionic strengths,  $I_m$ , are plotted vs. pressure. The  $\phi_V$ 's increase with increasing pressure over the entire concentration range studied. At low molalities the  $\phi_V$ 's show a nonlinear pressure dependence. This behavior is similar at each temperature for all of the electrolytes studied (see Figure 2).

Although the concentration dependences for some of the electrolytes studied are not linear functions of  $m^{1/2}$  at a given pressure (Figure 3), the relative apparent molal volumes,  $\phi_V(P) - \phi_V(0)$ , are linear functions of  $m^{1/2}$  (see Figure 4). Since the high pressure magnetic float system was designed to study the pressure effect on the densities or apparent molal volumes, we examined the relative apparent molal volumes as a function of applied pressure P (at P = 0, the absolute pressure is 1 atm), temperature (°C), and concentration (m, mol/kg of H<sub>2</sub>O) by using the linear equation





**Figure 3.** Apparent molal volumes of NaCl, KCl, MgCl<sub>2</sub>, Na<sub>2</sub>SO<sub>4</sub>, and MgSO<sub>4</sub> as functions of  $m^{1/2}$  at 0 °C and 1000 bars.



**Figure 4.** Relative apparent molal volumes,  $\phi_V(P) - \phi_V(0)$ , for NaCl, KCl, MgCl<sub>2</sub>, Na<sub>2</sub>SO<sub>4</sub>, and MgSO<sub>4</sub> as functions of  $m^{1/2}$  at 0 °C and 1000 bars.

where  $\phi_V(P)$  and  $\phi_V(0)$  are the apparent molal volumes at applied pressure, *P* and 0; the superscript zero is used to denote infinite dilution; and *S* is an empirical parameter that varies with pressure and temperature. The relative infinite dilution apparent molal volumes and the parameter *S* were fitted by using a least-squares method to equations of the form

$$\phi_{\rm V}{}^{\rm 0}(P) - \phi_{\rm V}{}^{\rm 0}(0) = \sum_{i,j}^n a_{i,j} P^i t^j$$
 (2a)

$$S = \sum_{i,j}^{n} b_{i,j} P^{i} t^{j}$$
(2b)

The coefficients needed for eq 2a and 2b were arrived at by fitting the data on an UNIVAC 1106 computer. These coefficients are given in Table IV along with the standard deviations.

In order to calculate the  $\phi_V$  at a given *P*, *t*, and *m* from these equations, it is necessary to have reliable  $\phi_V$  data at 1 atm or P = 0. The "best" available literature values for the 1 atm apparent molal volumes have been selected (1, 5–7, 10, 14, 17) and were fitted to the equation

$$\phi_{\rm V}(0) = \phi_{\rm V}^{0}(0) + Am^{1/2} + Bm + Cm^{3/2} \tag{3}$$

where  $\phi_{\vee}^{0}(0)$ , *A*, *B*, and *C* are all temperature dependent parameters

Journal of Chemical and Engineering Data, Vol. 22, No. 2, 1977 205

| Variables                        | NaCl           | KCI            | MgCl <sub>2</sub> | Na <sub>2</sub> SO <sub>4</sub> | MgSO₄          |
|----------------------------------|----------------|----------------|-------------------|---------------------------------|----------------|
| P                                | 1.542 (E — 2)  | 1.228 (E — 2)  | 1.566 (E — 2)     | 2.285 (E — 2)                   | 4.076 (E -2)   |
| Pt                               | -1.099 (E - 4) | -1.589 (E-4)   | -3.150 (E - 4)    | -3.141 (E - 4)                  | -2.901 (E - 4) |
| Pt <sup>2</sup>                  | 9.68 (E - 7)   | 1.797 (E - 6)  | 3.911 (E - 6)     | 2.125 (E - 6)                   | 5.888 (E - 6)  |
| Pm <sup>1/2</sup>                | -7.62(E-3)     | -6.964 (E - 3) | -2.269 (E - 3)    | -1.576 (E - 3)                  | -3.887 (E - 2) |
| Ptm <sup>1/2</sup>               | 3.05 (E - 6)   | 7.060 (E - 5)  | 2.611 (E - 4)     | 1.257 (E - 4)                   | 3.066 (E - 4)  |
| $Pt^2m^{1/2}$                    | 0              | -9.849 (E - 7) | -3,115 (E - 6)    | -1.597 (E - 6)                  | -9.099 (E - 6) |
| p <sup>2</sup>                   | -2.439 (E - 5) | -1.261(E - 5)  | -1.202 (E - 5)    | -1.250 (E - 5)                  | -3.593 (E - 5) |
| $P^2t$                           | 1.81 (E - 8)   | 1.19 (E - 8)   | 1.19 (E - 8)      | 6.92 (E - 8)                    | -1.273 (E - 7) |
| $P^2 m^{1/2}$                    | 1.415 (E - 5)  | 1.089 (E - 5)  | -3.14 (E - 6)     | -3.11(E - 6)                    | 4.239 (E - 5)  |
| P <sup>2</sup> tm <sup>1/2</sup> | 0              | 0              | 0                 | 0                               | 2.261 (E - 7)  |
| <b>p</b> <sup>3</sup>            | 2.158 (F - 8)  | 6.50 (E - 9)   | 1.496 (E - 8)     | 9.82 (F - 9)                    | 1.567 (E - 8)  |
| $P^3m^{1/2}$                     | -8.11 (E - 9)  | -6.26 (E - 9)  | -5.3 (E - 11)     | 0                               | -1.662 (E - 8) |
| P <sup>4</sup>                   | -6.48 (E - 12) | 0              | -6.54 (F $- 12$ ) | -3.08 (F - 12)                  | 0              |
| Std dev                          | 0.23           | 0.08           | 0.18              | 0.24                            | 0.28           |

<sup>a</sup> The terms (E – a), given for each variable, mean the coefficient is times  $10^{-a}$ .

Table V. Coefficients for Equation 3<sup>a</sup>

| Variables                               | NaCl           | KCI               | MgCl <sub>2</sub> | Na₂SO₄                   | MgSO <sub>4</sub> |
|-----------------------------------------|----------------|-------------------|-------------------|--------------------------|-------------------|
| φγ <sup>0</sup> , <sub>1 atm</sub> 0 °C | 12.90          | 23.63             | 10.42             | 2.33                     | - 13.06           |
| t                                       | 0.1990         | 0.1788            | 0.2660            | 0.508                    | 0.3720            |
| t <sup>2</sup>                          | -2.008 (E - 3) | -2.000 (E - 3)    | -4.128 (E - 3)    | -5.456 (E - 3)           | -5.472 (E - 3)    |
| m <sup>1/2</sup>                        | 1.5992         | 1.407             | 8.132             | 8.188                    | 33.3710           |
| tm <sup>1/2</sup>                       | 5.388 (E - 3)  | 1.118 (E — 2)     | -0.0498           | 0.1777                   | -0.2963           |
| $t^2 m^{1/2}$                           | 2.194 (E - 4)  | 1.848 (E - 4)     | 1.277 (E - 3)     | -1.8704 (E - 3)          | 1.314 (E - 2)     |
| m                                       | 1.004          | 1.235             | -0.820            | 13.427                   | -40.4948          |
| tm                                      | -4.951 (E - 2) | -5.714 (E - 2)    | -0.2202           | -0.7505                  | -4.843 (E - 2)    |
| t²m                                     | 3.082 (E - 4)  | 5.256 (E - 4)     | 3.382 (E - 3)     | 9,2568 (E - 3)           | -2.821 (E - 2)    |
| $m^{3/2}$                               | 0              | 0 ` ′             | 0                 | 0                        | 28.8998           |
| tm <sup>3/2</sup>                       | 0              | 0                 | 0                 | 0                        | 0.2388            |
| $t^2 m^{3/2}$                           | 0              | 0                 | 0                 | 0                        | 2.482 (E - 2)     |
| Av dev                                  | 0.051          | 0.01 <sub>0</sub> | 0.03 <sub>3</sub> | <b>0.04</b> <sub>1</sub> | 0.028             |

<sup>a</sup> The terms (E – a), given for each variable, mean the coefficient is times  $10^{-a}$ .

$$\phi_{\vee}^{0}(0) = \sum_{i}^{n} \phi_{i} t^{i}$$
(3a)

$$A = \sum_{i}^{n} A_{i} t^{i}$$
(3b)

$$B = \sum_{i}^{n} B_{i} t^{i}$$
 (3c)

$$C = \sum_{i}^{n} C_{i} t^{i}$$
(3d)

The coefficients for eq 3 are given in Table V along with the standard deviations.

The temperature effect on the apparent molal volumes at 1000 bars and  $l_{\rm m} = 1$  is shown in Figure 5. The values of  $\phi_{\rm V}$  for NaCl and KCl increase with temperature, the values of  $\phi_{\rm V}$  for MgCl<sub>2</sub> have small temperature effects, while  $\phi_{\rm V}$ 's for Na<sub>2</sub>SO<sub>4</sub> increase rapidly at temperatures between 0 and 30 °C, then start to level off and have a tendency to decrease at temperatures above 40 °C. The values of  $\phi_{\rm V}$  for MgSO<sub>4</sub> actually show a maximum at 30 °C.

The smoothed apparent molal volumes of these electrolytes calculated from eq 2 and 3 can be used to calculate the densities by using the equation

$$d = d^{0}(1000 + mM)/(d^{0}m\phi_{V} + 1000)$$
(4)

The average errors in  $\phi_{\rm V}$  for NaCl at 1000 bars are approximately  $\pm 0.1$  (at  $l_{\rm m} = 1.0$ ) and  $\pm 0.2$  (at  $l_{\rm m} = 0.1$ ) cm<sup>3</sup> mol<sup>-1</sup>, which correspond to density errors of  $\pm 100$  and  $\pm 20$  g cm<sup>-3</sup>, respectively. The density errors for other salts are smaller.



**Figure 5.** Apparent molal volumes of NaCl, KCl, MgCl<sub>2</sub>, Na<sub>2</sub>SO<sub>4</sub>, and MgSO<sub>4</sub> as functions of temperature at  $I_m = 1$  and 1000 bars.

The apparent molal compressibilities can be calculated by differentiating eq 1 with respect to pressure

$$\phi_{\rm K} = -\partial \phi_{\rm V} / \partial P \tag{5}$$

The values of  $\phi_{\rm K}$  for NaCl, MgCl<sub>2</sub>, and Na<sub>2</sub>SO<sub>4</sub> calculated at  $l_{\rm m}$  = 1.0, 0 °C, and 1 atm agree reasonably with the data of Millero

Table VI. Comparisons of  $\phi_{\mathbf{K}}$  Obtained in this Study and the Data of Millero et al. at  $I_m = 1.0, 0$  °C, and 1 Atm

| Salt                            | $-10^4\phi_{K}$ (ours) | −10 <sup>4</sup> φ <sub>K</sub> <sup>a</sup><br>(Millero et al.) |
|---------------------------------|------------------------|------------------------------------------------------------------|
| NaCl                            | 78 ± 28                | 60.4                                                             |
| MgCl <sub>2</sub>               | 143 ± 22               | 121.2                                                            |
| Na <sub>2</sub> SO <sub>4</sub> | 219 ± 29               | 171.4                                                            |
| MgSO₄                           | 213 ± 24               | 156.4                                                            |
| Millero et al. (16)             | , eq. 10.              |                                                                  |

et al. (16) (Table VI). The result of MgSO<sub>4</sub> is higher than the data of Millero et al.

Currently, the atmospherical densities and heat capacities of the major sea salts are being measured over a wide temperature range in our laboratory. Also the high pressure sound speed in the aqueous solutions of the major sea salts is being measured; these new results will be combined with the atmospherical densities and heat capacities to give precise equations of state for the major sea salts. The apparent molal volumes and compressibilities calculated from the sound-derived equations of state will be compared with the results of this study.

#### Literature Cited

- (1) Dunn, L. A., Trans. Faraday Soc., 64, 1898, 2951 (1968); 62, 2348 (1966)
- (2) Emmet, R. T., Ph.D. Dissertation, University of Miami, Miami, Florida, 1973
- (3) Emmet, R. T., Millero, F. J., J. Geophys. Res., 79, 3463 (1974).
- Franks, F., Smith, H. T., *Trans. Faraday Soc.*, **63**, 2589 (1973).
   Franks, F., Smith, H. T., *Trans. Faraday Soc.*, **63**, 2586 (1967).
   Geffcken, W., Price, D., *Z. Phys. Chem., Abt. B*, **26**, 81 (1934).
- Lee, S., Ph.D. Dissertation, Yale University, New Haven, Conn.; University Microfilm, Ann Arbor, Mich., Ord. No. 66-4906; Diss. Abstr. Int. B, 27, 131 (1966).
- (8) Millero, F. J., Rev. Sci. Instrum., 38, 1441 (1967).
- Millero, F. J., *Chem. Rev.*, **70**, 147 (1970).
   Millero, F. J., *J. Phys. Chem.*, 74, 356 (1970).
   Millero, F. J., "Water and Aqueous Solutions", R. A. Horne, Ed., Wiley, New York, N.Y., 1972, Chapter 15.
- Millero, F. J., Knox, J. H., Emmet, R. T., *J. Soln. Chem.*, 1, 173 (1972).
   Millero, F. J., *J. Soln. Chem.*, 2, 1 (1973).
   Millero, F. J., Knox, J. H., *J. Chem. Eng. Data*, 18, 407 (1973).
   Millero, F. J., "The Sea", Vol. 5, E. D. Goldberg, Ed., Wiley, New York, N.Y.,

- 1974, Chapter 1. (16) Millero, F. J., Ward, G. K., Lepple, F. K., Hoff, E. V., J. Phys. Chem., 78, 1636 (1974).
- (17) Vaslow, F., J. Phys. Chem., 70, 2286 (1966).
  (18) Young, T. F., Smith, M. B., J. Phys. Chem., 58, 716 (1954).

Received for review June 21, 1976. Accepted November 15, 1976. The authors wish to acknowledge the support of the Office of Naval Research (N00014-75-C-0173) and the Oceanographic Section of the National Science Foundation (OCE73-00351-A01) for this study

## Preliminary Data on the Pressure Effect on the Viscosity of Sodium Chloride–Water Solutions in the Range 10–40 °C

Joseph Kestin,\* H. Ezzat Khalifa, Sung-Tack Ro, and William A. Wakeham Division of Engineering, Brown University, Providence, Rhode Island 02912

The paper describes new, and preliminary, measurements of the viscosity of NaCl solutions in H<sub>2</sub>O over a range of temperatures 10–40  $^\circ\text{C},$  a range of pressures 0–30.0 MPa, and at three concentrations, together with check measurements on pure water. The precision is 0.2% and the accuracy is 0.3%. The measurements are represented by a purely empirical, analytic correlation which reproduces the ensemble of data with a standard deviation of 0.2%.

In conjunction with the expanding national program of research and development in geothermal energy, White and Williams (27), ERDA (2), it becomes increasingly more important to have access to a variety of thermophysical data concerning brines. In this connection the viscosity plays an important role, because it is needed to calculate pressure losses in wells, ducts, and channels, and, even more importantly, it is essential for the determination of porosities of rocks. Finally, the possibility that Walden's rule, Erdey-Grúz (3), may be applicable, opens the prospect of replacing the measurement of equivalent electric conductance by the, usually simpler, measurement of viscosity

In order to make a contribution to the solution of this problem, we have organized a program of measurement of the viscosity of a number of brines as a function of pressure, temperature, and composition. The measurements are performed in a slightly modified oscillating-disk viscometer, Kestin and Moszynski (13) and Kestin and Leidenfrost (10), which has been successfully

used in the past for the determination of the viscosity of compressed water, Moszynski (19), as well as superheated steam, Kestin and Wang (16) and Kestin and Richardson (14).

It is natural that a program of measurements on a variety of ionic solutions should start with solutions of sodium chloride. The present paper contains a very preliminary account of our results in the range of temperatures 10-40 °C, in the pressure range 0-30.0 MPa (MPa =  $10^6$ N/m<sup>2</sup> = 10 bar = 145.04 psi), and over a range of compositions up to about 90% of saturation.

The viscosity of sodium chloride solutions has been measured by a number of investigators, notably by Kaminsky (5). Survanarayana and Venkatesan (24), Korosi and Fabuss (17), Lengyel (18), Ostroff, Snowden, and Woessner (20), and Werblan, Rotowska, and Minc (26). Data are also listed in the book by Stokes and Mills (23). The measurements available in the literature cover the full range of compositions and a range of temperatures up to 150 °C; they all seem to have been performed by the capillary-flow method, and almost exclusively with the aid of an Ubbelohde-Rankine type of viscometer. However, as far as pressures are concerned, we were unable to locate any measurements at pressures higher than about 1.4 MPa, Potter, Shaw, and Haas (21). The fact that ours seem to be the first measurements which throw light on the effect of pressure on the viscosity of concentrated ionic solutions has provided the motivation for the preparation of this preliminary account. A more detailed report is reserved for a future date.

### 2. The Method

The data on the viscosity of NaCI-H<sub>2</sub>O solutions described in this paper have been obtained in an oscillating-disk instrument.